

DCO2520

DATA STRUCTURES AND ALGORITHMS

(CHAPTER 4)

BY

PATRICK WONG

Balanced Tree

Definition:

A balanced binary tree is a binary tree in which the heights of the two subtrees of every node never differ by more than 1.

Characteristic :

If the probability of searching for a key in a table is the same for all keys, a balanced binary tree yields the most efficient search.

/* p.399

�
Transformation

After insertion to the left subtree of node B, the balance of B may change from 0 to 1. Hence, changing A from 1 to 2.

To maintain a balanced tree, it is necessary to perform transformation so that

1. the inorder traversal of the transformed tree is the same as for the original tree.

2. the transformed tree is balanced.

/*p.404

�
Rotation

/* p.401 , p.402

�
Simple Algorithm

Left rotation:

q = right(p);

hold = left(q);

left(q) = p;

right(p) = hold;

�
Algorithmic Complexity

.	independent of hardware and implementation language

.	measure the increase of time complexity relative to the problem size n

.	when n is small, the complexity analysis may not be significant

.	when n gets larger, the choice of an appropriate algorithm is of utmost important

.	O notation (O(n)) is used to represent the complexity of an algorithm

O notation

f(n) is on the order of g(n) or f(n) is O(g(n))

when there exists positive integers a and b such that f(n) <= a*g(n) for all n >= b

�
Ex.

function O notation

n2 + 100n O(n2)

where a = 2 & b = 100

�
Sorting Algorithms

.	arrange records in a particular order

	Ex. telephone directory

.	sorting is based on a key

.	categorized into two classes:

Internal Sorting vs External Sorting�
1. internal sorting

	-items stored in RAM

	-allows flexibility in structuring and accessing data

	2. external sorting

		-	items stored in external medium

		- 	imposed strict constraints on accessing data

�
Selection of Sorting Algorithm

1.	the size of the problem;

2.	the space requirement;

3.	the time complexity, i.e. time required for processing and moving of records;

4.	the behavior of the algorithms in the worst case and average case;

5.	stability of the algorithms; i.e. able to sort records with non-unique keys

�
Bubble Sort

.	perhaps the simplest sorting algorithm as it keeps going through the file, exchanging adjacent elements if necessary and stops until there is no exchange in some pass.

Algorithm :

	for i from n down to 1 do

		for j from 2 to n do

			if a[j-1] > a[j]

						temp = a[j-1]

						a[j-1] = a[j]

						a[j] = temp

Selection Sort

.	first find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted.

�
algorithm :

for i from 1 to n-1 do

begin

	min = i

	for j from i+1 to n do

		if a[j]< a[min] then min = j

	temp = a[min]

	a[min] = a[i]

	a[i] = temp

end

�
Insertion Sort

.	consider one element at a time, inserting each in its proper place among those already considered.

Algorithm :

for i from 2 to n do

		v = a[i]

		j = i

		while a[j-1] > v & j>1 do

			a[j] = a[j-1]

			j = j-1

		a[j] = v

end

�
Quicksort :

quick(x,lb, ub)

int x[], lb, ub;

if (lb >= ub)

	return;

partition (x, lb, ub, j);

quick(x,lb,j-1);

quick(x,j+1,ub);

�
Quicksort

.	"divide and conquer " method

.	crux of the method is the partition

	1. a[i] is in its final place

	2. a[1],.., a[i-1] <= a[i]

	3. a[i+1],..,a[r] > a[i]

.	f(n) is O(nlogn) �
partition(x,lb,ub,pj)

int x[], lb,ub, *pj;

{

	int a, down, temp, up;

	a = x[lb];

	up = ub;

	down = lb;

	while (down < up) {

	 while (x[down] <= a && down < ub)

			down++;

		while (x[up] > a)

			up--;

		if (down < up) {

		/*interchange x[down] and x[up]*/

			temp = x[down];

			x[down] = x[up]

			x[up] = temp;

		} /*end if*/

	}/*end while*/

	x[lb] = x[up]

	x[up] = a;

	*pj = up;

}�
Radix Sort

.	keys represented as numbers in a base-M numbering system

.	individual digits are worked on

.	sort by the least significant digit first, then its adjacent unsorted digit

.	it can be observed that the file to be sorted will be partitioned into smaller files in the process

.	number of passes is equal to key length of base-M

.	in O(# of digits * n)

�
Merge Sort

.	merge two or more sorted sequences into a third sorted sequence

.	usually file will be divided in half

.	algorithm is recursive

.	in O(n log n)

�
Binary Tree Sort

.	scan each element and place it into its proper position in a binary tree

.	move to the left subtree if element is less than the node

.	move to the right subtree if element is greater than or equal to the node

.	an inorder traversal gives a sorted file

.	relative efficiency highly dependent on the original order of data

�
Binary Tree Sort

Ex. Original data is already sorted

	4, 8 , 12, 17, 26

- No. of comparisons : 14

-in O(n2)

�
Binary Tree Sort

Ex. Original data is

	12, 8, 17, 4, 26

- No. of comparisons : 10

- in O(nlogn)

�
Heapsort

.	remedied the drawback of binary tree :

a)	space requirement since one tree node is reserved 					for each element

b)	depending on implementation, space may be 								required for pointers or threads

c)	poor time efficiency for sorted input

�
.	data are first put into the heap which is a complete binary tree represented by an array

.	the father node is larger than or equal to its children nodes

�
Insertion Operation

.	Traverse the path from the empty position k to position 0 (root), seeking the first element greater than or equal to elt. When that element is found , elt is inserted immediately preceding it in the path.

�
Algorithm : pqinsert(dpq,k,elt)

s =k;

f = (s-1)/2 /* f is the father of s */

while (s > 0 && dpq[f] < elt) {

	dpq[s] = dpq[f];

	s = f; /* advance up the tree */

	f = (s-1)/2;

} /* end while */

dpq[s] = elt;

�
Deletion Operation

.	To delete maximum element is to get rid of the root. However, once this element is deleted, elements in positions 1 through k-1 must be redistributed into positions 0 through k-2

Algorithm : pqmaxdelete (dpq, k)

	1. p = dpq[0]

	2. adjustheap (0, k-1)

	3. return p

�
Adjusting the heap

.	Once the root of a tree is deleted, the larger of the two sons must move up to take its place as the new root. Then the subtree rooted at the position of the larger element which got moved up must be readjusted.

�
Algorithm : adjustheap (root, k)

1. f = root

2. s = largeson(f, k-1)

3. if s >= 0 & dpq[k] < dpq[s]) {

	dpq[f] = dpq[s];

	adjustheap(s,k);

}

else

	dpq[f] = dpq[k];

�
Heapsort Procedure

.	reates a heap of size n

.	redistributes the elements in order as it deletes elements from the root

Algorithm : heapsort

1. for (i = 1; i < n; i++)

	pqinsert(x, i, x[i]);

2. for (i = n - 1; i > 0; i--)

	x[i] = pqmaxdelete(x, i + 1);

		 									 DCO2520 DATA STRUCTURES & ALGORITHMS

		 	

4.� PAGE �2�

		 									 DCO2520 DATA STRUCTURES & ALGORITHMS

		 	

4.� PAGE �1�

